Struct GroundStation

Source
pub struct GroundStation {
    pub name: String,
    pub elevation_mask_deg: f64,
    pub latitude_deg: f64,
    pub longitude_deg: f64,
    pub height_km: f64,
    pub frame: Frame,
    pub measurement_types: IndexSet<MeasurementType>,
    pub integration_time: Option<Duration>,
    pub light_time_correction: bool,
    pub timestamp_noise_s: Option<StochasticNoise>,
    pub stochastic_noises: Option<IndexMap<MeasurementType, StochasticNoise>>,
}
Expand description

GroundStation defines a two-way ranging and doppler station.

Fields§

§name: String§elevation_mask_deg: f64

in degrees

§latitude_deg: f64

in degrees

§longitude_deg: f64

in degrees

§height_km: f64

in km

§frame: Frame§measurement_types: IndexSet<MeasurementType>§integration_time: Option<Duration>

Duration needed to generate a measurement (if unset, it is assumed to be instantaneous)

§light_time_correction: bool

Whether to correct for light travel time

§timestamp_noise_s: Option<StochasticNoise>

Noise on the timestamp of the measurement

§stochastic_noises: Option<IndexMap<MeasurementType, StochasticNoise>>

Implementations§

Source§

impl GroundStation

Source

pub fn dss65_madrid( elevation_mask: f64, range_noise_km: StochasticNoise, doppler_noise_km_s: StochasticNoise, iau_earth: Frame, ) -> Self

Source

pub fn dss34_canberra( elevation_mask: f64, range_noise_km: StochasticNoise, doppler_noise_km_s: StochasticNoise, iau_earth: Frame, ) -> Self

Source

pub fn dss13_goldstone( elevation_mask: f64, range_noise_km: StochasticNoise, doppler_noise_km_s: StochasticNoise, iau_earth: Frame, ) -> Self

Source§

impl GroundStation

Source

pub fn from_point( name: String, latitude_deg: f64, longitude_deg: f64, height_km: f64, frame: Frame, ) -> Self

Initializes a point on the surface of a celestial object. This is meant for analysis, not for spacecraft navigation.

Examples found in repository?
examples/01_orbit_prop/main.rs (lines 197-203)
30fn main() -> Result<(), Box<dyn Error>> {
31    pel::init();
32    // Dynamics models require planetary constants and ephemerides to be defined.
33    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
34    // This will automatically download the DE440s planetary ephemeris,
35    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
36    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
37    // planetary constants kernels.
38    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
39    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
40    // references to many functions.
41    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
42    // Define the orbit epoch
43    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45    // Define the orbit.
46    // First we need to fetch the Earth J2000 from information from the Almanac.
47    // This allows the frame to include the gravitational parameters and the shape of the Earth,
48    // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
49    // by loading a different set of planetary constants.
50    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
51
52    let orbit =
53        Orbit::try_keplerian_altitude(300.0, 0.015, 68.5, 65.2, 75.0, 0.0, epoch, earth_j2000)?;
54    // Print in in Keplerian form.
55    println!("{orbit:x}");
56
57    // There are two ways to propagate an orbit. We can make a quick approximation assuming only two-body
58    // motion. This is a useful first order approximation but it isn't used in real-world applications.
59
60    // This approach is a feature of ANISE.
61    let future_orbit_tb = orbit.at_epoch(epoch + Unit::Day * 3)?;
62    println!("{future_orbit_tb:x}");
63
64    // Two body propagation relies solely on Kepler's laws, so only the true anomaly will change.
65    println!(
66        "SMA changed by {:.3e} km",
67        orbit.sma_km()? - future_orbit_tb.sma_km()?
68    );
69    println!(
70        "ECC changed by {:.3e}",
71        orbit.ecc()? - future_orbit_tb.ecc()?
72    );
73    println!(
74        "INC changed by {:.3e} deg",
75        orbit.inc_deg()? - future_orbit_tb.inc_deg()?
76    );
77    println!(
78        "RAAN changed by {:.3e} deg",
79        orbit.raan_deg()? - future_orbit_tb.raan_deg()?
80    );
81    println!(
82        "AOP changed by {:.3e} deg",
83        orbit.aop_deg()? - future_orbit_tb.aop_deg()?
84    );
85    println!(
86        "TA changed by {:.3} deg",
87        orbit.ta_deg()? - future_orbit_tb.ta_deg()?
88    );
89
90    // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
91    // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
92    // models such as solar radiation pressure.
93
94    // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
95    let sc = Spacecraft::builder()
96        .orbit(orbit)
97        .mass(Mass::from_dry_mass(9.60))
98        .srp(SRPData {
99            area_m2: 10e-4,
100            coeff_reflectivity: 1.1,
101        })
102        .build();
103    println!("{sc:x}");
104
105    // Set up the spacecraft dynamics.
106
107    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
108    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
109    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
110
111    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
112    // We're using the JGM3 model here, which is the default in GMAT.
113    let mut jgm3_meta = MetaFile {
114        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
115        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
116    };
117    // And let's download it if we don't have it yet.
118    jgm3_meta.process(true)?;
119
120    // Build the spherical harmonics.
121    // The harmonics must be computed in the body fixed frame.
122    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
123    let harmonics_21x21 = Harmonics::from_stor(
124        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
125        HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
126    );
127
128    // Include the spherical harmonics into the orbital dynamics.
129    orbital_dyn.accel_models.push(harmonics_21x21);
130
131    // We define the solar radiation pressure, using the default solar flux and accounting only
132    // for the eclipsing caused by the Earth.
133    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
134
135    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
136    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
137    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
138
139    println!("{dynamics}");
140
141    // Finally, let's propagate this orbit to the same epoch as above.
142    // The first returned value is the spacecraft state at the final epoch.
143    // The second value is the full trajectory where the step size is variable step used by the propagator.
144    let (future_sc, trajectory) = Propagator::default(dynamics)
145        .with(sc, almanac.clone())
146        .until_epoch_with_traj(future_orbit_tb.epoch)?;
147
148    println!("=== High fidelity propagation ===");
149    println!(
150        "SMA changed by {:.3} km",
151        orbit.sma_km()? - future_sc.orbit.sma_km()?
152    );
153    println!(
154        "ECC changed by {:.6}",
155        orbit.ecc()? - future_sc.orbit.ecc()?
156    );
157    println!(
158        "INC changed by {:.3e} deg",
159        orbit.inc_deg()? - future_sc.orbit.inc_deg()?
160    );
161    println!(
162        "RAAN changed by {:.3} deg",
163        orbit.raan_deg()? - future_sc.orbit.raan_deg()?
164    );
165    println!(
166        "AOP changed by {:.3} deg",
167        orbit.aop_deg()? - future_sc.orbit.aop_deg()?
168    );
169    println!(
170        "TA changed by {:.3} deg",
171        orbit.ta_deg()? - future_sc.orbit.ta_deg()?
172    );
173
174    // We also have access to the full trajectory throughout the propagation.
175    println!("{trajectory}");
176
177    // With the trajectory, let's build a few data products.
178
179    // 1. Export the trajectory as a CCSDS OEM version 2.0 file and as a parquet file, which includes the Keplerian orbital elements.
180
181    trajectory.to_oem_file(
182        "./01_cubesat_hf_prop.oem",
183        ExportCfg::builder().step(Unit::Minute * 2).build(),
184    )?;
185
186    trajectory.to_parquet_with_cfg(
187        "./01_cubesat_hf_prop.parquet",
188        ExportCfg::builder().step(Unit::Minute * 2).build(),
189        almanac.clone(),
190    )?;
191
192    // 2. Compare the difference in the radial-intrack-crosstrack frame between the high fidelity
193    // and Keplerian propagation. The RIC frame is commonly used to compute the difference in position
194    // and velocity of different spacecraft.
195    // 3. Compute the azimuth, elevation, range, and range-rate data of that spacecraft as seen from Boulder, CO, USA.
196
197    let boulder_station = GroundStation::from_point(
198        "Boulder, CO, USA".to_string(),
199        40.014984,   // latitude in degrees
200        -105.270546, // longitude in degrees
201        1.6550,      // altitude in kilometers
202        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
203    );
204
205    // We iterate over the trajectory, grabbing a state every two minutes.
206    let mut offset_s = vec![];
207    let mut epoch_str = vec![];
208    let mut ric_x_km = vec![];
209    let mut ric_y_km = vec![];
210    let mut ric_z_km = vec![];
211    let mut ric_vx_km_s = vec![];
212    let mut ric_vy_km_s = vec![];
213    let mut ric_vz_km_s = vec![];
214
215    let mut azimuth_deg = vec![];
216    let mut elevation_deg = vec![];
217    let mut range_km = vec![];
218    let mut range_rate_km_s = vec![];
219    for state in trajectory.every(Unit::Minute * 2) {
220        // Try to compute the Keplerian/two body state just in time.
221        // This method occasionally fails to converge on an appropriate true anomaly
222        // from the mean anomaly. If that happens, we just skip this state.
223        // The high fidelity and Keplerian states diverge continuously, and we're curious
224        // about the divergence in this quick analysis.
225        let this_epoch = state.epoch();
226        match orbit.at_epoch(this_epoch) {
227            Ok(tb_then) => {
228                offset_s.push((this_epoch - orbit.epoch).to_seconds());
229                epoch_str.push(format!("{this_epoch}"));
230                // Compute the two body state just in time.
231                let ric = state.orbit.ric_difference(&tb_then)?;
232                ric_x_km.push(ric.radius_km.x);
233                ric_y_km.push(ric.radius_km.y);
234                ric_z_km.push(ric.radius_km.z);
235                ric_vx_km_s.push(ric.velocity_km_s.x);
236                ric_vy_km_s.push(ric.velocity_km_s.y);
237                ric_vz_km_s.push(ric.velocity_km_s.z);
238
239                // Compute the AER data for each state.
240                let aer = almanac.azimuth_elevation_range_sez(
241                    state.orbit,
242                    boulder_station.to_orbit(this_epoch, &almanac)?,
243                    None,
244                    None,
245                )?;
246                azimuth_deg.push(aer.azimuth_deg);
247                elevation_deg.push(aer.elevation_deg);
248                range_km.push(aer.range_km);
249                range_rate_km_s.push(aer.range_rate_km_s);
250            }
251            Err(e) => warn!("{} {e}", state.epoch()),
252        };
253    }
254
255    // Build the data frames.
256    let ric_df = df!(
257        "Offset (s)" => offset_s.clone(),
258        "Epoch" => epoch_str.clone(),
259        "RIC X (km)" => ric_x_km,
260        "RIC Y (km)" => ric_y_km,
261        "RIC Z (km)" => ric_z_km,
262        "RIC VX (km/s)" => ric_vx_km_s,
263        "RIC VY (km/s)" => ric_vy_km_s,
264        "RIC VZ (km/s)" => ric_vz_km_s,
265    )?;
266
267    println!("RIC difference at start\n{}", ric_df.head(Some(10)));
268    println!("RIC difference at end\n{}", ric_df.tail(Some(10)));
269
270    let aer_df = df!(
271        "Offset (s)" => offset_s.clone(),
272        "Epoch" => epoch_str.clone(),
273        "azimuth (deg)" => azimuth_deg,
274        "elevation (deg)" => elevation_deg,
275        "range (km)" => range_km,
276        "range rate (km/s)" => range_rate_km_s,
277    )?;
278
279    // Finally, let's see when the spacecraft is visible, assuming 15 degrees minimum elevation.
280    let mask = aer_df
281        .column("elevation (deg)")?
282        .gt(&Column::Scalar(ScalarColumn::new(
283            "elevation mask (deg)".into(),
284            Scalar::new(DataType::Float64, AnyValue::Float64(15.0)),
285            offset_s.len(),
286        )))?;
287    let cubesat_visible = aer_df.filter(&mask)?;
288
289    println!("{cubesat_visible}");
290
291    Ok(())
292}
Source

pub fn with_msr_type( self, msr_type: MeasurementType, noise: StochasticNoise, ) -> Self

Returns a copy of this ground station with the new measurement type added (or replaced)

Source

pub fn without_msr_type(self, msr_type: MeasurementType) -> Self

Returns a copy of this ground station without the provided measurement type (if defined, else no error)

Source

pub fn with_integration_time(self, integration_time: Option<Duration>) -> Self

Source

pub fn with_msr_bias_constant( self, msr_type: MeasurementType, bias_constant: f64, ) -> Result<Self, ODError>

Returns a copy of this ground station with the measurement type noises’ constant bias set to the provided value.

Source

pub fn azimuth_elevation_of( &self, rx: Orbit, obstructing_body: Option<Frame>, almanac: &Almanac, ) -> AlmanacResult<AzElRange>

Computes the azimuth and elevation of the provided object seen from this ground station, both in degrees. This is a shortcut to almanac.azimuth_elevation_range_sez.

Source

pub fn to_orbit(&self, epoch: Epoch, almanac: &Almanac) -> PhysicsResult<Orbit>

Return this ground station as an orbit in its current frame

Examples found in repository?
examples/01_orbit_prop/main.rs (line 242)
30fn main() -> Result<(), Box<dyn Error>> {
31    pel::init();
32    // Dynamics models require planetary constants and ephemerides to be defined.
33    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
34    // This will automatically download the DE440s planetary ephemeris,
35    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
36    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
37    // planetary constants kernels.
38    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
39    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
40    // references to many functions.
41    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
42    // Define the orbit epoch
43    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45    // Define the orbit.
46    // First we need to fetch the Earth J2000 from information from the Almanac.
47    // This allows the frame to include the gravitational parameters and the shape of the Earth,
48    // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
49    // by loading a different set of planetary constants.
50    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
51
52    let orbit =
53        Orbit::try_keplerian_altitude(300.0, 0.015, 68.5, 65.2, 75.0, 0.0, epoch, earth_j2000)?;
54    // Print in in Keplerian form.
55    println!("{orbit:x}");
56
57    // There are two ways to propagate an orbit. We can make a quick approximation assuming only two-body
58    // motion. This is a useful first order approximation but it isn't used in real-world applications.
59
60    // This approach is a feature of ANISE.
61    let future_orbit_tb = orbit.at_epoch(epoch + Unit::Day * 3)?;
62    println!("{future_orbit_tb:x}");
63
64    // Two body propagation relies solely on Kepler's laws, so only the true anomaly will change.
65    println!(
66        "SMA changed by {:.3e} km",
67        orbit.sma_km()? - future_orbit_tb.sma_km()?
68    );
69    println!(
70        "ECC changed by {:.3e}",
71        orbit.ecc()? - future_orbit_tb.ecc()?
72    );
73    println!(
74        "INC changed by {:.3e} deg",
75        orbit.inc_deg()? - future_orbit_tb.inc_deg()?
76    );
77    println!(
78        "RAAN changed by {:.3e} deg",
79        orbit.raan_deg()? - future_orbit_tb.raan_deg()?
80    );
81    println!(
82        "AOP changed by {:.3e} deg",
83        orbit.aop_deg()? - future_orbit_tb.aop_deg()?
84    );
85    println!(
86        "TA changed by {:.3} deg",
87        orbit.ta_deg()? - future_orbit_tb.ta_deg()?
88    );
89
90    // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
91    // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
92    // models such as solar radiation pressure.
93
94    // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
95    let sc = Spacecraft::builder()
96        .orbit(orbit)
97        .mass(Mass::from_dry_mass(9.60))
98        .srp(SRPData {
99            area_m2: 10e-4,
100            coeff_reflectivity: 1.1,
101        })
102        .build();
103    println!("{sc:x}");
104
105    // Set up the spacecraft dynamics.
106
107    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
108    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
109    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
110
111    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
112    // We're using the JGM3 model here, which is the default in GMAT.
113    let mut jgm3_meta = MetaFile {
114        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
115        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
116    };
117    // And let's download it if we don't have it yet.
118    jgm3_meta.process(true)?;
119
120    // Build the spherical harmonics.
121    // The harmonics must be computed in the body fixed frame.
122    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
123    let harmonics_21x21 = Harmonics::from_stor(
124        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
125        HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
126    );
127
128    // Include the spherical harmonics into the orbital dynamics.
129    orbital_dyn.accel_models.push(harmonics_21x21);
130
131    // We define the solar radiation pressure, using the default solar flux and accounting only
132    // for the eclipsing caused by the Earth.
133    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
134
135    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
136    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
137    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
138
139    println!("{dynamics}");
140
141    // Finally, let's propagate this orbit to the same epoch as above.
142    // The first returned value is the spacecraft state at the final epoch.
143    // The second value is the full trajectory where the step size is variable step used by the propagator.
144    let (future_sc, trajectory) = Propagator::default(dynamics)
145        .with(sc, almanac.clone())
146        .until_epoch_with_traj(future_orbit_tb.epoch)?;
147
148    println!("=== High fidelity propagation ===");
149    println!(
150        "SMA changed by {:.3} km",
151        orbit.sma_km()? - future_sc.orbit.sma_km()?
152    );
153    println!(
154        "ECC changed by {:.6}",
155        orbit.ecc()? - future_sc.orbit.ecc()?
156    );
157    println!(
158        "INC changed by {:.3e} deg",
159        orbit.inc_deg()? - future_sc.orbit.inc_deg()?
160    );
161    println!(
162        "RAAN changed by {:.3} deg",
163        orbit.raan_deg()? - future_sc.orbit.raan_deg()?
164    );
165    println!(
166        "AOP changed by {:.3} deg",
167        orbit.aop_deg()? - future_sc.orbit.aop_deg()?
168    );
169    println!(
170        "TA changed by {:.3} deg",
171        orbit.ta_deg()? - future_sc.orbit.ta_deg()?
172    );
173
174    // We also have access to the full trajectory throughout the propagation.
175    println!("{trajectory}");
176
177    // With the trajectory, let's build a few data products.
178
179    // 1. Export the trajectory as a CCSDS OEM version 2.0 file and as a parquet file, which includes the Keplerian orbital elements.
180
181    trajectory.to_oem_file(
182        "./01_cubesat_hf_prop.oem",
183        ExportCfg::builder().step(Unit::Minute * 2).build(),
184    )?;
185
186    trajectory.to_parquet_with_cfg(
187        "./01_cubesat_hf_prop.parquet",
188        ExportCfg::builder().step(Unit::Minute * 2).build(),
189        almanac.clone(),
190    )?;
191
192    // 2. Compare the difference in the radial-intrack-crosstrack frame between the high fidelity
193    // and Keplerian propagation. The RIC frame is commonly used to compute the difference in position
194    // and velocity of different spacecraft.
195    // 3. Compute the azimuth, elevation, range, and range-rate data of that spacecraft as seen from Boulder, CO, USA.
196
197    let boulder_station = GroundStation::from_point(
198        "Boulder, CO, USA".to_string(),
199        40.014984,   // latitude in degrees
200        -105.270546, // longitude in degrees
201        1.6550,      // altitude in kilometers
202        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
203    );
204
205    // We iterate over the trajectory, grabbing a state every two minutes.
206    let mut offset_s = vec![];
207    let mut epoch_str = vec![];
208    let mut ric_x_km = vec![];
209    let mut ric_y_km = vec![];
210    let mut ric_z_km = vec![];
211    let mut ric_vx_km_s = vec![];
212    let mut ric_vy_km_s = vec![];
213    let mut ric_vz_km_s = vec![];
214
215    let mut azimuth_deg = vec![];
216    let mut elevation_deg = vec![];
217    let mut range_km = vec![];
218    let mut range_rate_km_s = vec![];
219    for state in trajectory.every(Unit::Minute * 2) {
220        // Try to compute the Keplerian/two body state just in time.
221        // This method occasionally fails to converge on an appropriate true anomaly
222        // from the mean anomaly. If that happens, we just skip this state.
223        // The high fidelity and Keplerian states diverge continuously, and we're curious
224        // about the divergence in this quick analysis.
225        let this_epoch = state.epoch();
226        match orbit.at_epoch(this_epoch) {
227            Ok(tb_then) => {
228                offset_s.push((this_epoch - orbit.epoch).to_seconds());
229                epoch_str.push(format!("{this_epoch}"));
230                // Compute the two body state just in time.
231                let ric = state.orbit.ric_difference(&tb_then)?;
232                ric_x_km.push(ric.radius_km.x);
233                ric_y_km.push(ric.radius_km.y);
234                ric_z_km.push(ric.radius_km.z);
235                ric_vx_km_s.push(ric.velocity_km_s.x);
236                ric_vy_km_s.push(ric.velocity_km_s.y);
237                ric_vz_km_s.push(ric.velocity_km_s.z);
238
239                // Compute the AER data for each state.
240                let aer = almanac.azimuth_elevation_range_sez(
241                    state.orbit,
242                    boulder_station.to_orbit(this_epoch, &almanac)?,
243                    None,
244                    None,
245                )?;
246                azimuth_deg.push(aer.azimuth_deg);
247                elevation_deg.push(aer.elevation_deg);
248                range_km.push(aer.range_km);
249                range_rate_km_s.push(aer.range_rate_km_s);
250            }
251            Err(e) => warn!("{} {e}", state.epoch()),
252        };
253    }
254
255    // Build the data frames.
256    let ric_df = df!(
257        "Offset (s)" => offset_s.clone(),
258        "Epoch" => epoch_str.clone(),
259        "RIC X (km)" => ric_x_km,
260        "RIC Y (km)" => ric_y_km,
261        "RIC Z (km)" => ric_z_km,
262        "RIC VX (km/s)" => ric_vx_km_s,
263        "RIC VY (km/s)" => ric_vy_km_s,
264        "RIC VZ (km/s)" => ric_vz_km_s,
265    )?;
266
267    println!("RIC difference at start\n{}", ric_df.head(Some(10)));
268    println!("RIC difference at end\n{}", ric_df.tail(Some(10)));
269
270    let aer_df = df!(
271        "Offset (s)" => offset_s.clone(),
272        "Epoch" => epoch_str.clone(),
273        "azimuth (deg)" => azimuth_deg,
274        "elevation (deg)" => elevation_deg,
275        "range (km)" => range_km,
276        "range rate (km/s)" => range_rate_km_s,
277    )?;
278
279    // Finally, let's see when the spacecraft is visible, assuming 15 degrees minimum elevation.
280    let mask = aer_df
281        .column("elevation (deg)")?
282        .gt(&Column::Scalar(ScalarColumn::new(
283            "elevation mask (deg)".into(),
284            Scalar::new(DataType::Float64, AnyValue::Float64(15.0)),
285            offset_s.len(),
286        )))?;
287    let cubesat_visible = aer_df.filter(&mask)?;
288
289    println!("{cubesat_visible}");
290
291    Ok(())
292}

Trait Implementations§

Source§

impl Clone for GroundStation

Source§

fn clone(&self) -> GroundStation

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl ConfigRepr for GroundStation

Source§

fn load<P>(path: P) -> Result<Self, ConfigError>
where P: AsRef<Path>,

Builds the configuration representation from the path to a yaml
Source§

fn load_many<P>(path: P) -> Result<Vec<Self>, ConfigError>
where P: AsRef<Path>,

Builds a sequence of “Selves” from the provided path to a yaml
Source§

fn load_named<P>(path: P) -> Result<BTreeMap<String, Self>, ConfigError>
where P: AsRef<Path>,

Builds a map of names to “selves” from the provided path to a yaml
Source§

fn loads_many(data: &str) -> Result<Vec<Self>, ConfigError>

Builds a sequence of “Selves” from the provided string of a yaml
Source§

fn loads_named(data: &str) -> Result<BTreeMap<String, Self>, ConfigError>

Builds a sequence of “Selves” from the provided string of a yaml
Source§

impl Debug for GroundStation

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for GroundStation

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl<'de> Deserialize<'de> for GroundStation

Source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl Display for GroundStation

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<S: Interpolatable> EventEvaluator<S> for &GroundStation

Source§

fn eval( &self, rx_gs_frame: &S, almanac: Arc<Almanac>, ) -> Result<f64, EventError>

Compute the elevation in the SEZ frame. This call will panic if the frame of the input state does not match that of the ground station.

Source§

fn epoch_precision(&self) -> Duration

Epoch precision of the election evaluator is 1 ms

Source§

fn value_precision(&self) -> f64

Angle precision of the elevation evaluator is 1 millidegree.

Source§

fn eval_string( &self, state: &S, almanac: Arc<Almanac>, ) -> Result<String, EventError>

Returns a string representation of the event evaluation for the given state
Source§

fn eval_crossing( &self, prev_state: &S, next_state: &S, almanac: Arc<Almanac>, ) -> Result<bool, EventError>

Source§

impl PartialEq for GroundStation

Source§

fn eq(&self, other: &GroundStation) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Serialize for GroundStation

Source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl TrackerSensitivity<Spacecraft, Spacecraft> for GroundStation

Source§

fn h_tilde<M: DimName>( &self, msr: &Measurement, msr_types: &IndexSet<MeasurementType>, rx: &Spacecraft, almanac: Arc<Almanac>, ) -> Result<OMatrix<f64, M, <Spacecraft as State>::Size>, ODError>

Returns the sensitivity matrix of size MxS where M is the number of simultaneous measurements and S is the size of the state being solved for.
Source§

impl TrackingDevice<Spacecraft> for GroundStation

Source§

fn measure( &mut self, epoch: Epoch, traj: &Traj<Spacecraft>, rng: Option<&mut Pcg64Mcg>, almanac: Arc<Almanac>, ) -> Result<Option<Measurement>, ODError>

Perform a measurement from the ground station to the receiver (rx).

Source§

fn measurement_covar( &self, msr_type: MeasurementType, epoch: Epoch, ) -> Result<f64, ODError>

Returns the measurement noise of this ground station.

§Methodology

Noises are modeled using a [StochasticNoise] process, defined by the sigma on the turn-on bias and on the steady state noise. The measurement noise is computed assuming that all measurements are independent variables, i.e. the measurement matrix is a diagonal matrix. The first item in the diagonal is the range noise (in km), set to the square of the steady state sigma. The second item is the Doppler noise (in km/s), set to the square of the steady state sigma of that Gauss Markov process.

Source§

fn measurement_types(&self) -> &IndexSet<MeasurementType>

Returns the enabled measurement types for thie device.
Source§

fn name(&self) -> String

Returns the name of this tracking data simulator
Source§

fn location( &self, epoch: Epoch, frame: Frame, almanac: Arc<Almanac>, ) -> AlmanacResult<Orbit>

Returns the device location at the given epoch and in the given frame.
Source§

fn measure_instantaneous( &mut self, rx: Spacecraft, rng: Option<&mut Pcg64Mcg>, almanac: Arc<Almanac>, ) -> Result<Option<Measurement>, ODError>

Source§

fn measurement_bias( &self, msr_type: MeasurementType, _epoch: Epoch, ) -> Result<f64, ODError>

Source§

fn measurement_covar_matrix<M: DimName>( &self, msr_types: &IndexSet<MeasurementType>, epoch: Epoch, ) -> Result<OMatrix<f64, M, M>, ODError>

Source§

fn measurement_bias_vector<M: DimName>( &self, msr_types: &IndexSet<MeasurementType>, epoch: Epoch, ) -> Result<OVector<f64, M>, ODError>

Source§

impl StructuralPartialEq for GroundStation

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> FromDhall for T

Source§

fn from_dhall(v: &Value) -> Result<T, Error>

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToDhall for T
where T: Serialize,

Source§

fn to_dhall(&self, ty: Option<&SimpleType>) -> Result<Value, Error>

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

§

impl<T> ErasedDestructor for T
where T: 'static,

§

impl<T> MaybeSendSync for T

Source§

impl<T> Scalar for T
where T: 'static + Clone + PartialEq + Debug,