pub struct ODProcess<'a, D: Dynamics, MsrSize: DimName, Accel: DimName, K: Filter<D::StateType, Accel, MsrSize>, Trk: TrackerSensitivity<D::StateType, D::StateType>>where
D::StateType: Interpolatable + Add<OVector<f64, <D::StateType as State>::Size>, Output = D::StateType>,
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
DefaultAllocator: Allocator<<D::StateType as State>::Size> + Allocator<<D::StateType as State>::VecLength> + Allocator<MsrSize> + Allocator<MsrSize, <D::StateType as State>::Size> + Allocator<MsrSize, MsrSize> + Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size> + Allocator<Accel> + Allocator<Accel, Accel> + Allocator<<D::StateType as State>::Size, Accel> + Allocator<Accel, <D::StateType as State>::Size>,{
pub prop: PropInstance<'a, D>,
pub kf: K,
pub devices: BTreeMap<String, Trk>,
pub estimates: Vec<K::Estimate>,
pub residuals: Vec<Option<Residual<MsrSize>>>,
pub ekf_trigger: Option<EkfTrigger>,
pub resid_crit: Option<ResidRejectCrit>,
pub almanac: Arc<Almanac>,
/* private fields */
}
Expand description
Sets up an orbit determination process (ODP).
§Algorithm details
§Classical vs. Extended Kalman filter
In Nyx, an ODP configured in Classical Kalman Filter will track the state deviation compared to the nominal state. An ODP configured in Extended Kalman Filter mode will update the propagation state on each (accepted) measurement.
The EKF mode requires a “trigger” which switches the filter from a CKF to an EKF. This prevents quick divergence of a filter.
§Measurement residual ratio and rejection
The measurement residual is a signed scalar, despite ODP being able to process multiple measurements simultaneously. By default, if a measurement is more than 3 measurement sigmas off, it will be rejected to avoid biasing the filter.
Fields§
§prop: PropInstance<'a, D>
PropInstance used for the estimation
kf: K
Kalman filter itself
devices: BTreeMap<String, Trk>
Tracking devices
estimates: Vec<K::Estimate>
Vector of estimates available after a pass
residuals: Vec<Option<Residual<MsrSize>>>
Vector of residuals available after a pass
ekf_trigger: Option<EkfTrigger>
§resid_crit: Option<ResidRejectCrit>
Residual rejection criteria allows preventing bad measurements from affecting the estimation.
almanac: Arc<Almanac>
Implementations§
Source§impl<MsrSize: DimName, Accel: DimName, Trk: TrackerSensitivity<Spacecraft, Spacecraft>> ODProcess<'_, SpacecraftDynamics, MsrSize, Accel, KF<Spacecraft, Accel, MsrSize>, Trk>where
DefaultAllocator: Allocator<MsrSize> + Allocator<MsrSize, <Spacecraft as State>::Size> + Allocator<Const<1>, MsrSize> + Allocator<<Spacecraft as State>::Size> + Allocator<<Spacecraft as State>::Size, <Spacecraft as State>::Size> + Allocator<MsrSize, MsrSize> + Allocator<<Spacecraft as State>::Size, MsrSize> + Allocator<Accel> + Allocator<Accel, Accel> + Allocator<<Spacecraft as State>::VecLength> + Allocator<<Spacecraft as State>::Size, Accel> + Allocator<Accel, <Spacecraft as State>::Size>,
impl<MsrSize: DimName, Accel: DimName, Trk: TrackerSensitivity<Spacecraft, Spacecraft>> ODProcess<'_, SpacecraftDynamics, MsrSize, Accel, KF<Spacecraft, Accel, MsrSize>, Trk>where
DefaultAllocator: Allocator<MsrSize> + Allocator<MsrSize, <Spacecraft as State>::Size> + Allocator<Const<1>, MsrSize> + Allocator<<Spacecraft as State>::Size> + Allocator<<Spacecraft as State>::Size, <Spacecraft as State>::Size> + Allocator<MsrSize, MsrSize> + Allocator<<Spacecraft as State>::Size, MsrSize> + Allocator<Accel> + Allocator<Accel, Accel> + Allocator<<Spacecraft as State>::VecLength> + Allocator<<Spacecraft as State>::Size, Accel> + Allocator<Accel, <Spacecraft as State>::Size>,
Sourcepub fn to_parquet<P: AsRef<Path>>(
&self,
arc: &TrackingDataArc,
path: P,
cfg: ExportCfg,
) -> Result<PathBuf, ODError>
pub fn to_parquet<P: AsRef<Path>>( &self, arc: &TrackingDataArc, path: P, cfg: ExportCfg, ) -> Result<PathBuf, ODError>
Store the estimates and residuals in a parquet file
Examples found in repository?
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
31
32 // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
33 // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
34 let mut latest_jwst_ephem = MetaFile {
35 uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
36 crc32: None,
37 };
38 latest_jwst_ephem.process(true)?;
39
40 // Load this ephem in the general Almanac we're using for this analysis.
41 let almanac = Arc::new(
42 MetaAlmanac::latest()
43 .map_err(Box::new)?
44 .load_from_metafile(latest_jwst_ephem, true)?,
45 );
46
47 // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
48 // in the BSP. We need this ID in order to query the ephemeris.
49 const JWST_NAIF_ID: i32 = -170;
50 // Let's build a frame in the J2000 orientation centered on the JWST.
51 const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
52
53 // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
54 let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
55 println!("JWST defined from {earliest_epoch} to {latest_epoch}");
56 // Fetch the state, printing it in the Earth J2000 frame.
57 let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
58 println!("{jwst_orbit:x}");
59
60 // Build the spacecraft
61 // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
62 // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
63 let jwst = Spacecraft::builder()
64 .orbit(jwst_orbit)
65 .srp(SRPData {
66 area_m2: 21.197 * 14.162,
67 coeff_reflectivity: 1.56,
68 })
69 .mass(Mass::from_dry_mass(6200.0))
70 .build();
71
72 // Build up the spacecraft uncertainty builder.
73 // We can use the spacecraft uncertainty structure to build this up.
74 // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
75 // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
76 // Nyx can also estimate the deviation of the spacecraft parameters.
77 let jwst_uncertainty = SpacecraftUncertainty::builder()
78 .nominal(jwst)
79 .frame(LocalFrame::RIC)
80 .x_km(0.5)
81 .y_km(0.3)
82 .z_km(1.5)
83 .vx_km_s(1e-4)
84 .vy_km_s(0.6e-3)
85 .vz_km_s(3e-3)
86 .build();
87
88 println!("{jwst_uncertainty}");
89
90 // Build the Kalman filter estimate.
91 // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
92 // but this approach requires quite a bit more boilerplate code.
93 let jwst_estimate = jwst_uncertainty.to_estimate()?;
94
95 // Set up the spacecraft dynamics.
96 // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
97 // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
98
99 let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics.
103 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
104
105 // Build the propagator set up to use for the whole analysis.
106 let setup = Propagator::default(dynamics);
107
108 // All of the analysis will use this duration.
109 let prediction_duration = 6.5 * Unit::Day;
110
111 // === Covariance mapping ===
112 // For the covariance mapping / prediction, we'll use the common orbit determination approach.
113 // This is done by setting up a spacecraft OD process, and predicting for the analysis duration.
114
115 let ckf = KF::no_snc(jwst_estimate);
116
117 // Build the propagation instance for the OD process.
118 let prop = setup.with(jwst.with_stm(), almanac.clone());
119 let mut odp = SpacecraftODProcess::ckf(prop, ckf, BTreeMap::new(), None, almanac.clone());
120
121 // Define the prediction step, i.e. how often we want to know the covariance.
122 let step = 1_i64.minutes();
123 // Finally, predict, and export the trajectory with covariance to a parquet file.
124 odp.predict_for(step, prediction_duration)?;
125 odp.to_parquet(
126 &TrackingDataArc::default(),
127 "./02_jwst_covar_map.parquet",
128 ExportCfg::default(),
129 )?;
130
131 // === Monte Carlo framework ===
132 // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
133
134 let my_mc = MonteCarlo::new(
135 jwst, // Nominal state
136 jwst_estimate.to_random_variable()?,
137 "02_jwst".to_string(), // Scenario name
138 None, // No specific seed specified, so one will be drawn from the computer's entropy.
139 );
140
141 let num_runs = 5_000;
142 let rslts = my_mc.run_until_epoch(
143 setup,
144 almanac.clone(),
145 jwst.epoch() + prediction_duration,
146 num_runs,
147 );
148
149 assert_eq!(rslts.runs.len(), num_runs);
150 // Finally, export these results, computing the eclipse percentage for all of these results.
151
152 // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
153 let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
154 let umbra_event = eclipse_loc.to_umbra_event();
155 let penumbra_event = eclipse_loc.to_penumbra_event();
156
157 rslts.to_parquet(
158 "02_jwst_monte_carlo.parquet",
159 Some(vec![&umbra_event, &penumbra_event]),
160 ExportCfg::default(),
161 almanac,
162 )?;
163
164 Ok(())
165}
More examples
33fn main() -> Result<(), Box<dyn Error>> {
34 pel::init();
35
36 // ====================== //
37 // === ALMANAC SET UP === //
38 // ====================== //
39
40 // Dynamics models require planetary constants and ephemerides to be defined.
41 // Let's start by grabbing those by using ANISE's MetaAlmanac.
42
43 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
44 .iter()
45 .collect();
46
47 let meta = data_folder.join("lro-dynamics.dhall");
48
49 // Load this ephem in the general Almanac we're using for this analysis.
50 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
51 .map_err(Box::new)?
52 .process(true)
53 .map_err(Box::new)?;
54
55 let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
56 moon_pc.mu_km3_s2 = 4902.74987;
57 almanac.planetary_data.set_by_id(MOON, moon_pc)?;
58
59 let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
60 earth_pc.mu_km3_s2 = 398600.436;
61 almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
62
63 // Save this new kernel for reuse.
64 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
65 almanac
66 .planetary_data
67 .save_as(&data_folder.join("lro-specific.pca"), true)?;
68
69 // Lock the almanac (an Arc is a read only structure).
70 let almanac = Arc::new(almanac);
71
72 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
73 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
74 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
75 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
76 let lro_frame = Frame::from_ephem_j2000(-85);
77
78 // To build the trajectory we need to provide a spacecraft template.
79 let sc_template = Spacecraft::builder()
80 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
81 .srp(SRPData {
82 // SRP configuration is arbitrary, but we will be estimating it anyway.
83 area_m2: 3.9 * 2.7,
84 coeff_reflectivity: 0.96,
85 })
86 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
87 .build();
88 // Now we can build the trajectory from the BSP file.
89 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
90 let traj_as_flown = Traj::from_bsp(
91 lro_frame,
92 MOON_J2000,
93 almanac.clone(),
94 sc_template,
95 5.seconds(),
96 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
97 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
98 Aberration::LT,
99 Some("LRO".to_string()),
100 )?;
101
102 println!("{traj_as_flown}");
103
104 // ====================== //
105 // === MODEL MATCHING === //
106 // ====================== //
107
108 // Set up the spacecraft dynamics.
109
110 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
111 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
112 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
113
114 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
115 // We're using the GRAIL JGGRX model.
116 let mut jggrx_meta = MetaFile {
117 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
118 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
119 };
120 // And let's download it if we don't have it yet.
121 jggrx_meta.process(true)?;
122
123 // Build the spherical harmonics.
124 // The harmonics must be computed in the body fixed frame.
125 // We're using the long term prediction of the Moon principal axes frame.
126 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
127 let sph_harmonics = Harmonics::from_stor(
128 almanac.frame_from_uid(moon_pa_frame)?,
129 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
130 );
131
132 // Include the spherical harmonics into the orbital dynamics.
133 orbital_dyn.accel_models.push(sph_harmonics);
134
135 // We define the solar radiation pressure, using the default solar flux and accounting only
136 // for the eclipsing caused by the Earth and Moon.
137 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
138 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
139
140 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
141 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
142 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
143
144 println!("{dynamics}");
145
146 // Now we can build the propagator.
147 let setup = Propagator::default_dp78(dynamics.clone());
148
149 // For reference, let's build the trajectory with Nyx's models from that LRO state.
150 let (sim_final, traj_as_sim) = setup
151 .with(*traj_as_flown.first(), almanac.clone())
152 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
153
154 println!("SIM INIT: {:x}", traj_as_flown.first());
155 println!("SIM FINAL: {sim_final:x}");
156 // Compute RIC difference between SIM and LRO ephem
157 let sim_lro_delta = sim_final
158 .orbit
159 .ric_difference(&traj_as_flown.last().orbit)?;
160 println!("{traj_as_sim}");
161 println!(
162 "SIM v LRO - RIC Position (m): {:.3}",
163 sim_lro_delta.radius_km * 1e3
164 );
165 println!(
166 "SIM v LRO - RIC Velocity (m/s): {:.3}",
167 sim_lro_delta.velocity_km_s * 1e3
168 );
169
170 traj_as_sim.ric_diff_to_parquet(
171 &traj_as_flown,
172 "./04_lro_sim_truth_error.parquet",
173 ExportCfg::default(),
174 )?;
175
176 // ==================== //
177 // === OD SIMULATOR === //
178 // ==================== //
179
180 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
181 // and the truth LRO state.
182
183 // Therefore, we will actually run an estimation from a dispersed LRO state.
184 // The sc_seed is the true LRO state from the BSP.
185 let sc_seed = *traj_as_flown.first();
186
187 // Load the Deep Space Network ground stations.
188 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
189 let ground_station_file: PathBuf = [
190 env!("CARGO_MANIFEST_DIR"),
191 "examples",
192 "04_lro_od",
193 "dsn-network.yaml",
194 ]
195 .iter()
196 .collect();
197
198 let devices = GroundStation::load_named(ground_station_file)?;
199
200 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
201 // Nyx can build a tracking schedule for you based on the first station with access.
202 let trkconfg_yaml: PathBuf = [
203 env!("CARGO_MANIFEST_DIR"),
204 "examples",
205 "04_lro_od",
206 "tracking-cfg.yaml",
207 ]
208 .iter()
209 .collect();
210
211 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
212
213 // Build the tracking arc simulation to generate a "standard measurement".
214 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::new(
215 devices.clone(),
216 traj_as_flown.clone(),
217 configs,
218 )?;
219
220 trk.build_schedule(almanac.clone())?;
221 let arc = trk.generate_measurements(almanac.clone())?;
222 // Save the simulated tracking data
223 arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
224
225 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
226 println!("{arc}");
227
228 // Now that we have simulated measurements, we'll run the orbit determination.
229
230 // ===================== //
231 // === OD ESTIMATION === //
232 // ===================== //
233
234 let sc = SpacecraftUncertainty::builder()
235 .nominal(sc_seed)
236 .frame(LocalFrame::RIC)
237 .x_km(0.5)
238 .y_km(0.5)
239 .z_km(0.5)
240 .vx_km_s(5e-3)
241 .vy_km_s(5e-3)
242 .vz_km_s(5e-3)
243 .build();
244
245 // Build the filter initial estimate, which we will reuse in the filter.
246 let initial_estimate = sc.to_estimate()?;
247
248 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
249
250 let kf = KF::new(
251 // Increase the initial covariance to account for larger deviation.
252 initial_estimate,
253 // Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
254 SNC3::from_diagonal(10 * Unit::Minute, &[1e-12, 1e-12, 1e-12]),
255 );
256
257 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
258 let mut odp = SpacecraftODProcess::ckf(
259 setup.with(initial_estimate.state().with_stm(), almanac.clone()),
260 kf,
261 devices,
262 Some(ResidRejectCrit::default()),
263 almanac.clone(),
264 );
265
266 odp.process_arc(&arc)?;
267
268 let ric_err = traj_as_flown
269 .at(odp.estimates.last().unwrap().epoch())?
270 .orbit
271 .ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
272 println!("== RIC at end ==");
273 println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
274 println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
275
276 odp.to_parquet(&arc, "./04_lro_od_results.parquet", ExportCfg::default())?;
277
278 // In our case, we have the truth trajectory from NASA.
279 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
280 // Export the OD trajectory first.
281 let od_trajectory = odp.to_traj()?;
282 // Build the RIC difference.
283 od_trajectory.ric_diff_to_parquet(
284 &traj_as_flown,
285 "./04_lro_od_truth_error.parquet",
286 ExportCfg::default(),
287 )?;
288
289 Ok(())
290}
Source§impl<'a, D: Dynamics, MsrSize: DimName, Accel: DimName, K: Filter<D::StateType, Accel, MsrSize>, Trk: TrackerSensitivity<D::StateType, D::StateType>> ODProcess<'a, D, MsrSize, Accel, K, Trk>where
D::StateType: Interpolatable + Add<OVector<f64, <D::StateType as State>::Size>, Output = D::StateType>,
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
DefaultAllocator: Allocator<<D::StateType as State>::Size> + Allocator<<D::StateType as State>::VecLength> + Allocator<MsrSize> + Allocator<MsrSize, <D::StateType as State>::Size> + Allocator<MsrSize, MsrSize> + Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size> + Allocator<Accel> + Allocator<Accel, Accel> + Allocator<<D::StateType as State>::Size, Accel> + Allocator<Accel, <D::StateType as State>::Size>,
impl<'a, D: Dynamics, MsrSize: DimName, Accel: DimName, K: Filter<D::StateType, Accel, MsrSize>, Trk: TrackerSensitivity<D::StateType, D::StateType>> ODProcess<'a, D, MsrSize, Accel, K, Trk>where
D::StateType: Interpolatable + Add<OVector<f64, <D::StateType as State>::Size>, Output = D::StateType>,
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
DefaultAllocator: Allocator<<D::StateType as State>::Size> + Allocator<<D::StateType as State>::VecLength> + Allocator<MsrSize> + Allocator<MsrSize, <D::StateType as State>::Size> + Allocator<MsrSize, MsrSize> + Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size> + Allocator<Accel> + Allocator<Accel, Accel> + Allocator<<D::StateType as State>::Size, Accel> + Allocator<Accel, <D::StateType as State>::Size>,
Sourcepub fn new(
prop: PropInstance<'a, D>,
kf: K,
devices: BTreeMap<String, Trk>,
ekf_trigger: Option<EkfTrigger>,
resid_crit: Option<ResidRejectCrit>,
almanac: Arc<Almanac>,
) -> Self
pub fn new( prop: PropInstance<'a, D>, kf: K, devices: BTreeMap<String, Trk>, ekf_trigger: Option<EkfTrigger>, resid_crit: Option<ResidRejectCrit>, almanac: Arc<Almanac>, ) -> Self
Initialize a new orbit determination process with an optional trigger to switch from a CKF to an EKF.
Sourcepub fn ekf(
prop: PropInstance<'a, D>,
kf: K,
devices: BTreeMap<String, Trk>,
trigger: EkfTrigger,
resid_crit: Option<ResidRejectCrit>,
almanac: Arc<Almanac>,
) -> Self
pub fn ekf( prop: PropInstance<'a, D>, kf: K, devices: BTreeMap<String, Trk>, trigger: EkfTrigger, resid_crit: Option<ResidRejectCrit>, almanac: Arc<Almanac>, ) -> Self
Initialize a new orbit determination process with an Extended Kalman filter. The switch from a classical KF to an EKF is based on the provided trigger.
Sourcepub fn smooth(
&self,
condition: SmoothingArc,
) -> Result<Vec<K::Estimate>, ODError>
pub fn smooth( &self, condition: SmoothingArc, ) -> Result<Vec<K::Estimate>, ODError>
Allows to smooth the provided estimates. Returns the smoothed estimates or an error.
Estimates must be ordered in chronological order. This function will smooth the estimates from the last in the list to the first one.
Sourcepub fn rms_residual_ratios(&self) -> f64
pub fn rms_residual_ratios(&self) -> f64
Returns the root mean square of the prefit residual ratios
Sourcepub fn iterate_arc(
&mut self,
arc: &TrackingDataArc,
config: IterationConf,
) -> Result<(), ODError>
pub fn iterate_arc( &mut self, arc: &TrackingDataArc, config: IterationConf, ) -> Result<(), ODError>
Allows iterating on the filter solution. Requires specifying a smoothing condition to know where to stop the smoothing.
Sourcepub fn process_arc(&mut self, arc: &TrackingDataArc) -> Result<(), ODError>
pub fn process_arc(&mut self, arc: &TrackingDataArc) -> Result<(), ODError>
Process the provided measurements for this orbit determination process given the associated devices.
§Argument details
- The measurements must be a list mapping the name of the measurement device to the measurement itself.
- The name of all measurement devices must be present in the provided devices, i.e. the key set of
devices
must be a superset of the measurement device names present in the list. - The maximum step size to ensure we don’t skip any measurements.
Examples found in repository?
33fn main() -> Result<(), Box<dyn Error>> {
34 pel::init();
35
36 // ====================== //
37 // === ALMANAC SET UP === //
38 // ====================== //
39
40 // Dynamics models require planetary constants and ephemerides to be defined.
41 // Let's start by grabbing those by using ANISE's MetaAlmanac.
42
43 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
44 .iter()
45 .collect();
46
47 let meta = data_folder.join("lro-dynamics.dhall");
48
49 // Load this ephem in the general Almanac we're using for this analysis.
50 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
51 .map_err(Box::new)?
52 .process(true)
53 .map_err(Box::new)?;
54
55 let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
56 moon_pc.mu_km3_s2 = 4902.74987;
57 almanac.planetary_data.set_by_id(MOON, moon_pc)?;
58
59 let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
60 earth_pc.mu_km3_s2 = 398600.436;
61 almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
62
63 // Save this new kernel for reuse.
64 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
65 almanac
66 .planetary_data
67 .save_as(&data_folder.join("lro-specific.pca"), true)?;
68
69 // Lock the almanac (an Arc is a read only structure).
70 let almanac = Arc::new(almanac);
71
72 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
73 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
74 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
75 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
76 let lro_frame = Frame::from_ephem_j2000(-85);
77
78 // To build the trajectory we need to provide a spacecraft template.
79 let sc_template = Spacecraft::builder()
80 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
81 .srp(SRPData {
82 // SRP configuration is arbitrary, but we will be estimating it anyway.
83 area_m2: 3.9 * 2.7,
84 coeff_reflectivity: 0.96,
85 })
86 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
87 .build();
88 // Now we can build the trajectory from the BSP file.
89 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
90 let traj_as_flown = Traj::from_bsp(
91 lro_frame,
92 MOON_J2000,
93 almanac.clone(),
94 sc_template,
95 5.seconds(),
96 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
97 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
98 Aberration::LT,
99 Some("LRO".to_string()),
100 )?;
101
102 println!("{traj_as_flown}");
103
104 // ====================== //
105 // === MODEL MATCHING === //
106 // ====================== //
107
108 // Set up the spacecraft dynamics.
109
110 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
111 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
112 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
113
114 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
115 // We're using the GRAIL JGGRX model.
116 let mut jggrx_meta = MetaFile {
117 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
118 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
119 };
120 // And let's download it if we don't have it yet.
121 jggrx_meta.process(true)?;
122
123 // Build the spherical harmonics.
124 // The harmonics must be computed in the body fixed frame.
125 // We're using the long term prediction of the Moon principal axes frame.
126 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
127 let sph_harmonics = Harmonics::from_stor(
128 almanac.frame_from_uid(moon_pa_frame)?,
129 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
130 );
131
132 // Include the spherical harmonics into the orbital dynamics.
133 orbital_dyn.accel_models.push(sph_harmonics);
134
135 // We define the solar radiation pressure, using the default solar flux and accounting only
136 // for the eclipsing caused by the Earth and Moon.
137 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
138 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
139
140 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
141 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
142 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
143
144 println!("{dynamics}");
145
146 // Now we can build the propagator.
147 let setup = Propagator::default_dp78(dynamics.clone());
148
149 // For reference, let's build the trajectory with Nyx's models from that LRO state.
150 let (sim_final, traj_as_sim) = setup
151 .with(*traj_as_flown.first(), almanac.clone())
152 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
153
154 println!("SIM INIT: {:x}", traj_as_flown.first());
155 println!("SIM FINAL: {sim_final:x}");
156 // Compute RIC difference between SIM and LRO ephem
157 let sim_lro_delta = sim_final
158 .orbit
159 .ric_difference(&traj_as_flown.last().orbit)?;
160 println!("{traj_as_sim}");
161 println!(
162 "SIM v LRO - RIC Position (m): {:.3}",
163 sim_lro_delta.radius_km * 1e3
164 );
165 println!(
166 "SIM v LRO - RIC Velocity (m/s): {:.3}",
167 sim_lro_delta.velocity_km_s * 1e3
168 );
169
170 traj_as_sim.ric_diff_to_parquet(
171 &traj_as_flown,
172 "./04_lro_sim_truth_error.parquet",
173 ExportCfg::default(),
174 )?;
175
176 // ==================== //
177 // === OD SIMULATOR === //
178 // ==================== //
179
180 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
181 // and the truth LRO state.
182
183 // Therefore, we will actually run an estimation from a dispersed LRO state.
184 // The sc_seed is the true LRO state from the BSP.
185 let sc_seed = *traj_as_flown.first();
186
187 // Load the Deep Space Network ground stations.
188 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
189 let ground_station_file: PathBuf = [
190 env!("CARGO_MANIFEST_DIR"),
191 "examples",
192 "04_lro_od",
193 "dsn-network.yaml",
194 ]
195 .iter()
196 .collect();
197
198 let devices = GroundStation::load_named(ground_station_file)?;
199
200 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
201 // Nyx can build a tracking schedule for you based on the first station with access.
202 let trkconfg_yaml: PathBuf = [
203 env!("CARGO_MANIFEST_DIR"),
204 "examples",
205 "04_lro_od",
206 "tracking-cfg.yaml",
207 ]
208 .iter()
209 .collect();
210
211 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
212
213 // Build the tracking arc simulation to generate a "standard measurement".
214 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::new(
215 devices.clone(),
216 traj_as_flown.clone(),
217 configs,
218 )?;
219
220 trk.build_schedule(almanac.clone())?;
221 let arc = trk.generate_measurements(almanac.clone())?;
222 // Save the simulated tracking data
223 arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
224
225 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
226 println!("{arc}");
227
228 // Now that we have simulated measurements, we'll run the orbit determination.
229
230 // ===================== //
231 // === OD ESTIMATION === //
232 // ===================== //
233
234 let sc = SpacecraftUncertainty::builder()
235 .nominal(sc_seed)
236 .frame(LocalFrame::RIC)
237 .x_km(0.5)
238 .y_km(0.5)
239 .z_km(0.5)
240 .vx_km_s(5e-3)
241 .vy_km_s(5e-3)
242 .vz_km_s(5e-3)
243 .build();
244
245 // Build the filter initial estimate, which we will reuse in the filter.
246 let initial_estimate = sc.to_estimate()?;
247
248 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
249
250 let kf = KF::new(
251 // Increase the initial covariance to account for larger deviation.
252 initial_estimate,
253 // Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
254 SNC3::from_diagonal(10 * Unit::Minute, &[1e-12, 1e-12, 1e-12]),
255 );
256
257 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
258 let mut odp = SpacecraftODProcess::ckf(
259 setup.with(initial_estimate.state().with_stm(), almanac.clone()),
260 kf,
261 devices,
262 Some(ResidRejectCrit::default()),
263 almanac.clone(),
264 );
265
266 odp.process_arc(&arc)?;
267
268 let ric_err = traj_as_flown
269 .at(odp.estimates.last().unwrap().epoch())?
270 .orbit
271 .ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
272 println!("== RIC at end ==");
273 println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
274 println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
275
276 odp.to_parquet(&arc, "./04_lro_od_results.parquet", ExportCfg::default())?;
277
278 // In our case, we have the truth trajectory from NASA.
279 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
280 // Export the OD trajectory first.
281 let od_trajectory = odp.to_traj()?;
282 // Build the RIC difference.
283 od_trajectory.ric_diff_to_parquet(
284 &traj_as_flown,
285 "./04_lro_od_truth_error.parquet",
286 ExportCfg::default(),
287 )?;
288
289 Ok(())
290}
Sourcepub fn predict_until(
&mut self,
step: Duration,
end_epoch: Epoch,
) -> Result<(), ODError>
pub fn predict_until( &mut self, step: Duration, end_epoch: Epoch, ) -> Result<(), ODError>
Continuously predicts the trajectory until the provided end epoch, with covariance mapping at each step. In other words, this performs a time update.
Sourcepub fn predict_for(
&mut self,
step: Duration,
duration: Duration,
) -> Result<(), ODError>
pub fn predict_for( &mut self, step: Duration, duration: Duration, ) -> Result<(), ODError>
Continuously predicts the trajectory for the provided duration, with covariance mapping at each step. In other words, this performs a time update.
Examples found in repository?
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
31
32 // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
33 // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
34 let mut latest_jwst_ephem = MetaFile {
35 uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
36 crc32: None,
37 };
38 latest_jwst_ephem.process(true)?;
39
40 // Load this ephem in the general Almanac we're using for this analysis.
41 let almanac = Arc::new(
42 MetaAlmanac::latest()
43 .map_err(Box::new)?
44 .load_from_metafile(latest_jwst_ephem, true)?,
45 );
46
47 // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
48 // in the BSP. We need this ID in order to query the ephemeris.
49 const JWST_NAIF_ID: i32 = -170;
50 // Let's build a frame in the J2000 orientation centered on the JWST.
51 const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
52
53 // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
54 let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
55 println!("JWST defined from {earliest_epoch} to {latest_epoch}");
56 // Fetch the state, printing it in the Earth J2000 frame.
57 let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
58 println!("{jwst_orbit:x}");
59
60 // Build the spacecraft
61 // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
62 // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
63 let jwst = Spacecraft::builder()
64 .orbit(jwst_orbit)
65 .srp(SRPData {
66 area_m2: 21.197 * 14.162,
67 coeff_reflectivity: 1.56,
68 })
69 .mass(Mass::from_dry_mass(6200.0))
70 .build();
71
72 // Build up the spacecraft uncertainty builder.
73 // We can use the spacecraft uncertainty structure to build this up.
74 // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
75 // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
76 // Nyx can also estimate the deviation of the spacecraft parameters.
77 let jwst_uncertainty = SpacecraftUncertainty::builder()
78 .nominal(jwst)
79 .frame(LocalFrame::RIC)
80 .x_km(0.5)
81 .y_km(0.3)
82 .z_km(1.5)
83 .vx_km_s(1e-4)
84 .vy_km_s(0.6e-3)
85 .vz_km_s(3e-3)
86 .build();
87
88 println!("{jwst_uncertainty}");
89
90 // Build the Kalman filter estimate.
91 // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
92 // but this approach requires quite a bit more boilerplate code.
93 let jwst_estimate = jwst_uncertainty.to_estimate()?;
94
95 // Set up the spacecraft dynamics.
96 // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
97 // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
98
99 let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics.
103 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
104
105 // Build the propagator set up to use for the whole analysis.
106 let setup = Propagator::default(dynamics);
107
108 // All of the analysis will use this duration.
109 let prediction_duration = 6.5 * Unit::Day;
110
111 // === Covariance mapping ===
112 // For the covariance mapping / prediction, we'll use the common orbit determination approach.
113 // This is done by setting up a spacecraft OD process, and predicting for the analysis duration.
114
115 let ckf = KF::no_snc(jwst_estimate);
116
117 // Build the propagation instance for the OD process.
118 let prop = setup.with(jwst.with_stm(), almanac.clone());
119 let mut odp = SpacecraftODProcess::ckf(prop, ckf, BTreeMap::new(), None, almanac.clone());
120
121 // Define the prediction step, i.e. how often we want to know the covariance.
122 let step = 1_i64.minutes();
123 // Finally, predict, and export the trajectory with covariance to a parquet file.
124 odp.predict_for(step, prediction_duration)?;
125 odp.to_parquet(
126 &TrackingDataArc::default(),
127 "./02_jwst_covar_map.parquet",
128 ExportCfg::default(),
129 )?;
130
131 // === Monte Carlo framework ===
132 // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
133
134 let my_mc = MonteCarlo::new(
135 jwst, // Nominal state
136 jwst_estimate.to_random_variable()?,
137 "02_jwst".to_string(), // Scenario name
138 None, // No specific seed specified, so one will be drawn from the computer's entropy.
139 );
140
141 let num_runs = 5_000;
142 let rslts = my_mc.run_until_epoch(
143 setup,
144 almanac.clone(),
145 jwst.epoch() + prediction_duration,
146 num_runs,
147 );
148
149 assert_eq!(rslts.runs.len(), num_runs);
150 // Finally, export these results, computing the eclipse percentage for all of these results.
151
152 // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
153 let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
154 let umbra_event = eclipse_loc.to_umbra_event();
155 let penumbra_event = eclipse_loc.to_penumbra_event();
156
157 rslts.to_parquet(
158 "02_jwst_monte_carlo.parquet",
159 Some(vec![&umbra_event, &penumbra_event]),
160 ExportCfg::default(),
161 almanac,
162 )?;
163
164 Ok(())
165}
Sourcepub fn to_traj(&self) -> Result<Traj<D::StateType>, NyxError>
pub fn to_traj(&self) -> Result<Traj<D::StateType>, NyxError>
Builds the navigation trajectory for the estimated state only
Examples found in repository?
33fn main() -> Result<(), Box<dyn Error>> {
34 pel::init();
35
36 // ====================== //
37 // === ALMANAC SET UP === //
38 // ====================== //
39
40 // Dynamics models require planetary constants and ephemerides to be defined.
41 // Let's start by grabbing those by using ANISE's MetaAlmanac.
42
43 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
44 .iter()
45 .collect();
46
47 let meta = data_folder.join("lro-dynamics.dhall");
48
49 // Load this ephem in the general Almanac we're using for this analysis.
50 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
51 .map_err(Box::new)?
52 .process(true)
53 .map_err(Box::new)?;
54
55 let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
56 moon_pc.mu_km3_s2 = 4902.74987;
57 almanac.planetary_data.set_by_id(MOON, moon_pc)?;
58
59 let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
60 earth_pc.mu_km3_s2 = 398600.436;
61 almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
62
63 // Save this new kernel for reuse.
64 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
65 almanac
66 .planetary_data
67 .save_as(&data_folder.join("lro-specific.pca"), true)?;
68
69 // Lock the almanac (an Arc is a read only structure).
70 let almanac = Arc::new(almanac);
71
72 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
73 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
74 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
75 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
76 let lro_frame = Frame::from_ephem_j2000(-85);
77
78 // To build the trajectory we need to provide a spacecraft template.
79 let sc_template = Spacecraft::builder()
80 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
81 .srp(SRPData {
82 // SRP configuration is arbitrary, but we will be estimating it anyway.
83 area_m2: 3.9 * 2.7,
84 coeff_reflectivity: 0.96,
85 })
86 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
87 .build();
88 // Now we can build the trajectory from the BSP file.
89 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
90 let traj_as_flown = Traj::from_bsp(
91 lro_frame,
92 MOON_J2000,
93 almanac.clone(),
94 sc_template,
95 5.seconds(),
96 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
97 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
98 Aberration::LT,
99 Some("LRO".to_string()),
100 )?;
101
102 println!("{traj_as_flown}");
103
104 // ====================== //
105 // === MODEL MATCHING === //
106 // ====================== //
107
108 // Set up the spacecraft dynamics.
109
110 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
111 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
112 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
113
114 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
115 // We're using the GRAIL JGGRX model.
116 let mut jggrx_meta = MetaFile {
117 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
118 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
119 };
120 // And let's download it if we don't have it yet.
121 jggrx_meta.process(true)?;
122
123 // Build the spherical harmonics.
124 // The harmonics must be computed in the body fixed frame.
125 // We're using the long term prediction of the Moon principal axes frame.
126 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
127 let sph_harmonics = Harmonics::from_stor(
128 almanac.frame_from_uid(moon_pa_frame)?,
129 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
130 );
131
132 // Include the spherical harmonics into the orbital dynamics.
133 orbital_dyn.accel_models.push(sph_harmonics);
134
135 // We define the solar radiation pressure, using the default solar flux and accounting only
136 // for the eclipsing caused by the Earth and Moon.
137 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
138 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
139
140 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
141 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
142 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
143
144 println!("{dynamics}");
145
146 // Now we can build the propagator.
147 let setup = Propagator::default_dp78(dynamics.clone());
148
149 // For reference, let's build the trajectory with Nyx's models from that LRO state.
150 let (sim_final, traj_as_sim) = setup
151 .with(*traj_as_flown.first(), almanac.clone())
152 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
153
154 println!("SIM INIT: {:x}", traj_as_flown.first());
155 println!("SIM FINAL: {sim_final:x}");
156 // Compute RIC difference between SIM and LRO ephem
157 let sim_lro_delta = sim_final
158 .orbit
159 .ric_difference(&traj_as_flown.last().orbit)?;
160 println!("{traj_as_sim}");
161 println!(
162 "SIM v LRO - RIC Position (m): {:.3}",
163 sim_lro_delta.radius_km * 1e3
164 );
165 println!(
166 "SIM v LRO - RIC Velocity (m/s): {:.3}",
167 sim_lro_delta.velocity_km_s * 1e3
168 );
169
170 traj_as_sim.ric_diff_to_parquet(
171 &traj_as_flown,
172 "./04_lro_sim_truth_error.parquet",
173 ExportCfg::default(),
174 )?;
175
176 // ==================== //
177 // === OD SIMULATOR === //
178 // ==================== //
179
180 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
181 // and the truth LRO state.
182
183 // Therefore, we will actually run an estimation from a dispersed LRO state.
184 // The sc_seed is the true LRO state from the BSP.
185 let sc_seed = *traj_as_flown.first();
186
187 // Load the Deep Space Network ground stations.
188 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
189 let ground_station_file: PathBuf = [
190 env!("CARGO_MANIFEST_DIR"),
191 "examples",
192 "04_lro_od",
193 "dsn-network.yaml",
194 ]
195 .iter()
196 .collect();
197
198 let devices = GroundStation::load_named(ground_station_file)?;
199
200 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
201 // Nyx can build a tracking schedule for you based on the first station with access.
202 let trkconfg_yaml: PathBuf = [
203 env!("CARGO_MANIFEST_DIR"),
204 "examples",
205 "04_lro_od",
206 "tracking-cfg.yaml",
207 ]
208 .iter()
209 .collect();
210
211 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
212
213 // Build the tracking arc simulation to generate a "standard measurement".
214 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::new(
215 devices.clone(),
216 traj_as_flown.clone(),
217 configs,
218 )?;
219
220 trk.build_schedule(almanac.clone())?;
221 let arc = trk.generate_measurements(almanac.clone())?;
222 // Save the simulated tracking data
223 arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
224
225 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
226 println!("{arc}");
227
228 // Now that we have simulated measurements, we'll run the orbit determination.
229
230 // ===================== //
231 // === OD ESTIMATION === //
232 // ===================== //
233
234 let sc = SpacecraftUncertainty::builder()
235 .nominal(sc_seed)
236 .frame(LocalFrame::RIC)
237 .x_km(0.5)
238 .y_km(0.5)
239 .z_km(0.5)
240 .vx_km_s(5e-3)
241 .vy_km_s(5e-3)
242 .vz_km_s(5e-3)
243 .build();
244
245 // Build the filter initial estimate, which we will reuse in the filter.
246 let initial_estimate = sc.to_estimate()?;
247
248 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
249
250 let kf = KF::new(
251 // Increase the initial covariance to account for larger deviation.
252 initial_estimate,
253 // Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
254 SNC3::from_diagonal(10 * Unit::Minute, &[1e-12, 1e-12, 1e-12]),
255 );
256
257 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
258 let mut odp = SpacecraftODProcess::ckf(
259 setup.with(initial_estimate.state().with_stm(), almanac.clone()),
260 kf,
261 devices,
262 Some(ResidRejectCrit::default()),
263 almanac.clone(),
264 );
265
266 odp.process_arc(&arc)?;
267
268 let ric_err = traj_as_flown
269 .at(odp.estimates.last().unwrap().epoch())?
270 .orbit
271 .ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
272 println!("== RIC at end ==");
273 println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
274 println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
275
276 odp.to_parquet(&arc, "./04_lro_od_results.parquet", ExportCfg::default())?;
277
278 // In our case, we have the truth trajectory from NASA.
279 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
280 // Export the OD trajectory first.
281 let od_trajectory = odp.to_traj()?;
282 // Build the RIC difference.
283 od_trajectory.ric_diff_to_parquet(
284 &traj_as_flown,
285 "./04_lro_od_truth_error.parquet",
286 ExportCfg::default(),
287 )?;
288
289 Ok(())
290}
Source§impl<'a, D: Dynamics, MsrSize: DimName, Accel: DimName, K: Filter<D::StateType, Accel, MsrSize>, Trk: TrackerSensitivity<D::StateType, D::StateType>> ODProcess<'a, D, MsrSize, Accel, K, Trk>where
D::StateType: Interpolatable + Add<OVector<f64, <D::StateType as State>::Size>, Output = D::StateType>,
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
DefaultAllocator: Allocator<<D::StateType as State>::Size> + Allocator<<D::StateType as State>::VecLength> + Allocator<MsrSize> + Allocator<MsrSize, <D::StateType as State>::Size> + Allocator<MsrSize, MsrSize> + Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size> + Allocator<Accel> + Allocator<Accel, Accel> + Allocator<<D::StateType as State>::Size, Accel> + Allocator<Accel, <D::StateType as State>::Size>,
impl<'a, D: Dynamics, MsrSize: DimName, Accel: DimName, K: Filter<D::StateType, Accel, MsrSize>, Trk: TrackerSensitivity<D::StateType, D::StateType>> ODProcess<'a, D, MsrSize, Accel, K, Trk>where
D::StateType: Interpolatable + Add<OVector<f64, <D::StateType as State>::Size>, Output = D::StateType>,
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
DefaultAllocator: Allocator<<D::StateType as State>::Size> + Allocator<<D::StateType as State>::VecLength> + Allocator<MsrSize> + Allocator<MsrSize, <D::StateType as State>::Size> + Allocator<MsrSize, MsrSize> + Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size> + Allocator<Accel> + Allocator<Accel, Accel> + Allocator<<D::StateType as State>::Size, Accel> + Allocator<Accel, <D::StateType as State>::Size>,
Sourcepub fn ckf(
prop: PropInstance<'a, D>,
kf: K,
devices: BTreeMap<String, Trk>,
resid_crit: Option<ResidRejectCrit>,
almanac: Arc<Almanac>,
) -> Self
pub fn ckf( prop: PropInstance<'a, D>, kf: K, devices: BTreeMap<String, Trk>, resid_crit: Option<ResidRejectCrit>, almanac: Arc<Almanac>, ) -> Self
Examples found in repository?
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
31
32 // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
33 // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
34 let mut latest_jwst_ephem = MetaFile {
35 uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
36 crc32: None,
37 };
38 latest_jwst_ephem.process(true)?;
39
40 // Load this ephem in the general Almanac we're using for this analysis.
41 let almanac = Arc::new(
42 MetaAlmanac::latest()
43 .map_err(Box::new)?
44 .load_from_metafile(latest_jwst_ephem, true)?,
45 );
46
47 // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
48 // in the BSP. We need this ID in order to query the ephemeris.
49 const JWST_NAIF_ID: i32 = -170;
50 // Let's build a frame in the J2000 orientation centered on the JWST.
51 const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
52
53 // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
54 let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
55 println!("JWST defined from {earliest_epoch} to {latest_epoch}");
56 // Fetch the state, printing it in the Earth J2000 frame.
57 let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
58 println!("{jwst_orbit:x}");
59
60 // Build the spacecraft
61 // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
62 // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
63 let jwst = Spacecraft::builder()
64 .orbit(jwst_orbit)
65 .srp(SRPData {
66 area_m2: 21.197 * 14.162,
67 coeff_reflectivity: 1.56,
68 })
69 .mass(Mass::from_dry_mass(6200.0))
70 .build();
71
72 // Build up the spacecraft uncertainty builder.
73 // We can use the spacecraft uncertainty structure to build this up.
74 // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
75 // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
76 // Nyx can also estimate the deviation of the spacecraft parameters.
77 let jwst_uncertainty = SpacecraftUncertainty::builder()
78 .nominal(jwst)
79 .frame(LocalFrame::RIC)
80 .x_km(0.5)
81 .y_km(0.3)
82 .z_km(1.5)
83 .vx_km_s(1e-4)
84 .vy_km_s(0.6e-3)
85 .vz_km_s(3e-3)
86 .build();
87
88 println!("{jwst_uncertainty}");
89
90 // Build the Kalman filter estimate.
91 // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
92 // but this approach requires quite a bit more boilerplate code.
93 let jwst_estimate = jwst_uncertainty.to_estimate()?;
94
95 // Set up the spacecraft dynamics.
96 // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
97 // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
98
99 let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics.
103 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
104
105 // Build the propagator set up to use for the whole analysis.
106 let setup = Propagator::default(dynamics);
107
108 // All of the analysis will use this duration.
109 let prediction_duration = 6.5 * Unit::Day;
110
111 // === Covariance mapping ===
112 // For the covariance mapping / prediction, we'll use the common orbit determination approach.
113 // This is done by setting up a spacecraft OD process, and predicting for the analysis duration.
114
115 let ckf = KF::no_snc(jwst_estimate);
116
117 // Build the propagation instance for the OD process.
118 let prop = setup.with(jwst.with_stm(), almanac.clone());
119 let mut odp = SpacecraftODProcess::ckf(prop, ckf, BTreeMap::new(), None, almanac.clone());
120
121 // Define the prediction step, i.e. how often we want to know the covariance.
122 let step = 1_i64.minutes();
123 // Finally, predict, and export the trajectory with covariance to a parquet file.
124 odp.predict_for(step, prediction_duration)?;
125 odp.to_parquet(
126 &TrackingDataArc::default(),
127 "./02_jwst_covar_map.parquet",
128 ExportCfg::default(),
129 )?;
130
131 // === Monte Carlo framework ===
132 // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
133
134 let my_mc = MonteCarlo::new(
135 jwst, // Nominal state
136 jwst_estimate.to_random_variable()?,
137 "02_jwst".to_string(), // Scenario name
138 None, // No specific seed specified, so one will be drawn from the computer's entropy.
139 );
140
141 let num_runs = 5_000;
142 let rslts = my_mc.run_until_epoch(
143 setup,
144 almanac.clone(),
145 jwst.epoch() + prediction_duration,
146 num_runs,
147 );
148
149 assert_eq!(rslts.runs.len(), num_runs);
150 // Finally, export these results, computing the eclipse percentage for all of these results.
151
152 // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
153 let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
154 let umbra_event = eclipse_loc.to_umbra_event();
155 let penumbra_event = eclipse_loc.to_penumbra_event();
156
157 rslts.to_parquet(
158 "02_jwst_monte_carlo.parquet",
159 Some(vec![&umbra_event, &penumbra_event]),
160 ExportCfg::default(),
161 almanac,
162 )?;
163
164 Ok(())
165}
More examples
33fn main() -> Result<(), Box<dyn Error>> {
34 pel::init();
35
36 // ====================== //
37 // === ALMANAC SET UP === //
38 // ====================== //
39
40 // Dynamics models require planetary constants and ephemerides to be defined.
41 // Let's start by grabbing those by using ANISE's MetaAlmanac.
42
43 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
44 .iter()
45 .collect();
46
47 let meta = data_folder.join("lro-dynamics.dhall");
48
49 // Load this ephem in the general Almanac we're using for this analysis.
50 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
51 .map_err(Box::new)?
52 .process(true)
53 .map_err(Box::new)?;
54
55 let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
56 moon_pc.mu_km3_s2 = 4902.74987;
57 almanac.planetary_data.set_by_id(MOON, moon_pc)?;
58
59 let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
60 earth_pc.mu_km3_s2 = 398600.436;
61 almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
62
63 // Save this new kernel for reuse.
64 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
65 almanac
66 .planetary_data
67 .save_as(&data_folder.join("lro-specific.pca"), true)?;
68
69 // Lock the almanac (an Arc is a read only structure).
70 let almanac = Arc::new(almanac);
71
72 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
73 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
74 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
75 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
76 let lro_frame = Frame::from_ephem_j2000(-85);
77
78 // To build the trajectory we need to provide a spacecraft template.
79 let sc_template = Spacecraft::builder()
80 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
81 .srp(SRPData {
82 // SRP configuration is arbitrary, but we will be estimating it anyway.
83 area_m2: 3.9 * 2.7,
84 coeff_reflectivity: 0.96,
85 })
86 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
87 .build();
88 // Now we can build the trajectory from the BSP file.
89 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
90 let traj_as_flown = Traj::from_bsp(
91 lro_frame,
92 MOON_J2000,
93 almanac.clone(),
94 sc_template,
95 5.seconds(),
96 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
97 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
98 Aberration::LT,
99 Some("LRO".to_string()),
100 )?;
101
102 println!("{traj_as_flown}");
103
104 // ====================== //
105 // === MODEL MATCHING === //
106 // ====================== //
107
108 // Set up the spacecraft dynamics.
109
110 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
111 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
112 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
113
114 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
115 // We're using the GRAIL JGGRX model.
116 let mut jggrx_meta = MetaFile {
117 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
118 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
119 };
120 // And let's download it if we don't have it yet.
121 jggrx_meta.process(true)?;
122
123 // Build the spherical harmonics.
124 // The harmonics must be computed in the body fixed frame.
125 // We're using the long term prediction of the Moon principal axes frame.
126 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
127 let sph_harmonics = Harmonics::from_stor(
128 almanac.frame_from_uid(moon_pa_frame)?,
129 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
130 );
131
132 // Include the spherical harmonics into the orbital dynamics.
133 orbital_dyn.accel_models.push(sph_harmonics);
134
135 // We define the solar radiation pressure, using the default solar flux and accounting only
136 // for the eclipsing caused by the Earth and Moon.
137 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
138 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
139
140 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
141 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
142 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
143
144 println!("{dynamics}");
145
146 // Now we can build the propagator.
147 let setup = Propagator::default_dp78(dynamics.clone());
148
149 // For reference, let's build the trajectory with Nyx's models from that LRO state.
150 let (sim_final, traj_as_sim) = setup
151 .with(*traj_as_flown.first(), almanac.clone())
152 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
153
154 println!("SIM INIT: {:x}", traj_as_flown.first());
155 println!("SIM FINAL: {sim_final:x}");
156 // Compute RIC difference between SIM and LRO ephem
157 let sim_lro_delta = sim_final
158 .orbit
159 .ric_difference(&traj_as_flown.last().orbit)?;
160 println!("{traj_as_sim}");
161 println!(
162 "SIM v LRO - RIC Position (m): {:.3}",
163 sim_lro_delta.radius_km * 1e3
164 );
165 println!(
166 "SIM v LRO - RIC Velocity (m/s): {:.3}",
167 sim_lro_delta.velocity_km_s * 1e3
168 );
169
170 traj_as_sim.ric_diff_to_parquet(
171 &traj_as_flown,
172 "./04_lro_sim_truth_error.parquet",
173 ExportCfg::default(),
174 )?;
175
176 // ==================== //
177 // === OD SIMULATOR === //
178 // ==================== //
179
180 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
181 // and the truth LRO state.
182
183 // Therefore, we will actually run an estimation from a dispersed LRO state.
184 // The sc_seed is the true LRO state from the BSP.
185 let sc_seed = *traj_as_flown.first();
186
187 // Load the Deep Space Network ground stations.
188 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
189 let ground_station_file: PathBuf = [
190 env!("CARGO_MANIFEST_DIR"),
191 "examples",
192 "04_lro_od",
193 "dsn-network.yaml",
194 ]
195 .iter()
196 .collect();
197
198 let devices = GroundStation::load_named(ground_station_file)?;
199
200 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
201 // Nyx can build a tracking schedule for you based on the first station with access.
202 let trkconfg_yaml: PathBuf = [
203 env!("CARGO_MANIFEST_DIR"),
204 "examples",
205 "04_lro_od",
206 "tracking-cfg.yaml",
207 ]
208 .iter()
209 .collect();
210
211 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
212
213 // Build the tracking arc simulation to generate a "standard measurement".
214 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::new(
215 devices.clone(),
216 traj_as_flown.clone(),
217 configs,
218 )?;
219
220 trk.build_schedule(almanac.clone())?;
221 let arc = trk.generate_measurements(almanac.clone())?;
222 // Save the simulated tracking data
223 arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
224
225 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
226 println!("{arc}");
227
228 // Now that we have simulated measurements, we'll run the orbit determination.
229
230 // ===================== //
231 // === OD ESTIMATION === //
232 // ===================== //
233
234 let sc = SpacecraftUncertainty::builder()
235 .nominal(sc_seed)
236 .frame(LocalFrame::RIC)
237 .x_km(0.5)
238 .y_km(0.5)
239 .z_km(0.5)
240 .vx_km_s(5e-3)
241 .vy_km_s(5e-3)
242 .vz_km_s(5e-3)
243 .build();
244
245 // Build the filter initial estimate, which we will reuse in the filter.
246 let initial_estimate = sc.to_estimate()?;
247
248 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
249
250 let kf = KF::new(
251 // Increase the initial covariance to account for larger deviation.
252 initial_estimate,
253 // Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
254 SNC3::from_diagonal(10 * Unit::Minute, &[1e-12, 1e-12, 1e-12]),
255 );
256
257 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
258 let mut odp = SpacecraftODProcess::ckf(
259 setup.with(initial_estimate.state().with_stm(), almanac.clone()),
260 kf,
261 devices,
262 Some(ResidRejectCrit::default()),
263 almanac.clone(),
264 );
265
266 odp.process_arc(&arc)?;
267
268 let ric_err = traj_as_flown
269 .at(odp.estimates.last().unwrap().epoch())?
270 .orbit
271 .ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
272 println!("== RIC at end ==");
273 println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
274 println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
275
276 odp.to_parquet(&arc, "./04_lro_od_results.parquet", ExportCfg::default())?;
277
278 // In our case, we have the truth trajectory from NASA.
279 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
280 // Export the OD trajectory first.
281 let od_trajectory = odp.to_traj()?;
282 // Build the RIC difference.
283 od_trajectory.ric_diff_to_parquet(
284 &traj_as_flown,
285 "./04_lro_od_truth_error.parquet",
286 ExportCfg::default(),
287 )?;
288
289 Ok(())
290}
Auto Trait Implementations§
impl<'a, D, MsrSize, Accel, K, Trk> Freeze for ODProcess<'a, D, MsrSize, Accel, K, Trk>
impl<'a, D, MsrSize, Accel, K, Trk> !RefUnwindSafe for ODProcess<'a, D, MsrSize, Accel, K, Trk>
impl<'a, D, MsrSize, Accel, K, Trk> !Send for ODProcess<'a, D, MsrSize, Accel, K, Trk>
impl<'a, D, MsrSize, Accel, K, Trk> !Sync for ODProcess<'a, D, MsrSize, Accel, K, Trk>
impl<'a, D, MsrSize, Accel, K, Trk> !Unpin for ODProcess<'a, D, MsrSize, Accel, K, Trk>
impl<'a, D, MsrSize, Accel, K, Trk> !UnwindSafe for ODProcess<'a, D, MsrSize, Accel, K, Trk>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.